
Userspace Bypass: Accelerating
Syscall-intensive Applications

Zhe Zhou1, Yanxiang Bi,1 Junpeng Wan1, 3, Yangfan Zhou1, and Zhou Li2

1Fudan University, 2University of California, Irvine, 3Purdue University

1

Background – System Call

System call is a mechanism that allows a process to request services or
functionality from kernel.

User
Space

Kernel
Space

1 #include <stdio.h>
2 int main(){
3 printf("Hello World!\n");
4 return 0;
5 }

C library

syscall(SYS_write, 1,
 "Hello World!\n", 13);

...
do_syscall_64(nr, regs);
...

function call

system call

2

Background – System Call Cost

Direct cost
o Context Switch

o Saving and restoring the CPU states
o Syscall instructions

o E.g. syscall/sysret
Ø Syscall without operations costs ~ 992 CPU cycles

Indirect cost
o Cache Pollution

o L1 cache and TLB polluted by syscalls
o Out of Order Execution (OOE) of CPU Stall

o To guarantee the execution order
o Kernel Page Table Isolation(KPTI)

o Page table walking, TLB miss

3

Background – System Call

System call overhead is usually negligible, but sometimes it is significant.
Happens in applications with a huge I/O demand, e.g. Redis and Nginx.

User
Space

Kernel
Space

1 for(i=0; i < 0x1000000000; i++)
2 printf("Hello World!\n");

C library

syscall(SYS_write, 1,
 "Hello World!\n", 13);

...
do_syscall_64(nr, regs);
...

function call

system call

4

State-of-the-art Solutions
o Asynchronous syscalls

o Asynchronous system calls, OLS’07

o Syscall batching
o Cassyopia: Compiler assisted system optimization, HotOS’03
o Io_uring: Efficient IO with io_uring

o Unikernel
o Unikernels: Library operating systems for the cloud, ACM SIGARCH Computer Architecture News’13
o Cubicleos: a library OS with software componentization for practical isolation, ASPLOS’21
o Evaluating the performance of user-space and kernel-space web servers, CASCON’04

o In-kernel sandbox
o eBPF
o Privbox: Faster system calls through sandboxed privileged execution, ATC’22

o Kernel bypass
o DPDK 5

State-of-the-art Solutions
o Asynchronous syscalls

o Asynchronous system calls, OLS’07

o Syscall batching
o Cassyopia: Compiler assisted system optimization, HotOS’03
o Io_uring: Efficient IO with io_uring

o Unikernel
o Unikernels: Library operating systems for the cloud, ACM SIGARCH Computer Architecture News’13
o Cubicleos: a library OS with software componentisation for practical isolation, ASPLOS’21
o Evaluating the performance of user-space and kernel-space web servers, CASCON’04

o In-kernel sandbox
o eBPF
o Privbox: Faster system calls through sandboxed privileged execution, ATC’22

o Kernel bypass
o DPDK

Development
efforts

6

Userspace Bypass (UB)

No development efforts to
reduce system call cost

UB transparently translates user space
instructions to kernel space for syscall-
intensive applications.

user
space

do_syscall

syscall_
exit

user
space

syscall_
entry

user
space

syscall_
entry

do_syscall

user
space

user
space

do_syscall

User mode Kernel modeUser mode Kernel mode

……

do_syscall

user
space
……

syscall_
exit

syscall_
entry

……

Without UB With UB

user
space

do_syscall

syscall_
exit

user
space

syscall_
entry

user
space

syscall_
entry

do_syscall

user
space

user
space

do_syscall

User mode Kernel modeUser mode Kernel mode

……

do_syscall

user
space
……

syscall_
exit

syscall_
entry

……

7

UB Design

Hot Syscall Profiler

o Run in kernel mode

o Identify hot syscalls

BTC Translator

o Run in user mode

o Translate user space
instructions between hot
syscalls into BTC

o Security guarantees

BTC Runtime

o Run in kernel mode

o Execute BTC

8

UB Design – Regular Syscall

Code Path

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall
exit

Syscall

Syscall

Control flow

9

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall
exit

Syscall
profiler

Code Path
Syscall

Syscall

UB Design – Hot Syscall profiler

Fast Path o Syscall sampling & Coarse-grained
profiling
o Find syscall intensive thread

candidates

o Fine-grained profiling
o Find hot syscalls inside these threads

Control flow

10

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall
profiler

Code gen

Translator

SFI infoinfo

BTC of Fast
Path

Fast Path
Syscall

Syscall

UB Design – BTC Translator

Fast Path

Runtime info Control flow

11

Fast Path

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall

Syscall
profiler

Daemon

Code gen

Translator

SFI infoinfo

BTC of Fast
Path

Run time
w UB

UB Design – BTC Runtime

Runtime info Control flow

12

Fast Path

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall

Syscall
profiler

Daemon

Code gen

Translator

SFI infoinfo

BTC of Fast
Path

Run time
w UB

UB Design – BTC Runtime

Runtime info Control flow

13

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall
exit

Syscall
profiler

Code gen

Translator

SFI infoinfo

BTC of Fast
Path

w/o UB

Code Path
Syscall

Syscall

UB Design

w UB

Run time

Runtime info Control flow

14

Target Process

Kernel Space

Syscall
entry

Do
syscall

Syscall
exit

Syscall
profiler

BTC of Fast
Path

w/o UB

Fast Path
Syscall

Syscall

w UB

Code gen

UB Design

Run time

Runtime info

15

Translator

SFI infoinfo

Translator

SFI

Function: Disassemble the fast path binary and compile them to
BTC

Problem: Buggy and malicious userspace code could corrupt
kernel

Solution: Implement SFI (Software Fault Isolation) 1 in the BTC
translator.

o Register Remapping - protect kernel registers and stack
o Instruction Sanitization - avoid privilege escalation
o Memory Access Sanitization - prevent unauthorized access

to the kernel memory
o Branch Sanitization – prevent unauthorized kernel code

execution

1. Native client: A sandbox for portable, untrusted x86 native code

BTC Translator

16

o Direct branches are translated at start because the target
address is known when translating

o Indirect branches will be translated until the target address is
known during runtime

BTC Translator – JIT Style

Translator

SFI

Direct Branch Indirect Branch

jmp rax
ret

label1:
mov rax, 1
ret

label2:
mov rax, 2
ret

jmp label;
ret

label:
mov rax, 1
ret

17

0x123: JMP RAX

……

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

……

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

Start status

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123 → 0x456

……
CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

……

0x456: XX

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P1: Path 1

Start status

BTC Translator – Indirect Branch

18

0x123: JMP RAX

……

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

……

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

Start status

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123 → 0x456

……
CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

……

0x456: XX

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P1: Path 1

Start status

BTC Translator – Indirect Branch

19

CMP RAX, 0x456
JZ loc_0x456
CMP RAX, 0x789
JZ loc_0x789

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123 → 0x456
P2 add info: 0x123 → 0x789

……

P2 execute

CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

……

0x789: XX 0x456: XX

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P2

P1: Path 1
P2: Path 2

Start status

BTC Translator – Indirect Branch

20

o The hot syscall identifier and BTC runtime written in C

o The BTC translator written in Python

o Modify Linux kernel for less than 30 LOC

Implementation

21

The acceleration of

o I/O micro-benchmark
o Applications that purely perform file I/O operations

o Raw socket network packet process

o Redis

o Nginx

Settings

o Linux KPTI On / Off × Physical machine/ Virtual Machine

Evaluation

22

In-memory file access (syscall read)

o Get comparable performance with io_uring

o KPTI ON
o 40% - 110% on Physical machine
o 30% - 90% on VM

o KPTI OFF
o 16% - 52% on Physical machine
o 14% - 41% on VM

Evaluation - I/O Micro-benchmark

23

A brief view of the acceleration rate

o Raw socket => 30% - 40%

o Redis => -5% - 16%

o Nginx => -1% - 13%

(Physical machine with KPTI on)

Evaluation

24

o We propose Userspace Bypass(UB) which makes syscall
much cheaper

o UB requires no extra development efforts
o UB requires minimal system architecture changes

Code available at: https://github.com/glarer/UserspaceBypass

THANKS!

Conclusion

25

https://github.com/glarer/UserspaceBypass

