

Userspace Bypass: Accelerating Syscall-intensive Applications

Zhe Zhou¹, Yanxiang Bi,¹ Junpeng Wan^{1, 3}, Yangfan Zhou¹, and Zhou Li² ¹Fudan University, ²University of California, Irvine, ³Purdue University **System call** is a mechanism that allows a process to request services or functionality from kernel.

Background – System Call Cost

Direct cost

- $\circ~$ Context Switch
 - $\circ~$ Saving and restoring the CPU states
- $\circ~$ Syscall instructions
 - E.g. syscall/sysret
- Syscall without operations costs ~ 992 CPU cycles

Indirect cost

- $\circ~$ Cache Pollution
 - $\,\circ\,\,$ L1 cache and TLB polluted by syscalls
- $\circ~$ Out of Order Execution (OOE) of CPU Stall
 - $\circ~$ To guarantee the execution order
- Kernel Page Table Isolation(KPTI)
 - $\circ~$ Page table walking, TLB miss

System call overhead is usually negligible, but sometimes it is significant. Happens in applications with a huge I/O demand, e.g. Redis and Nginx.

State-of-the-art Solutions

• Asynchronous syscalls

• Asynchronous system calls, *OLS'07*

Syscall batching

- Cassyopia: Compiler assisted system optimization, *HotOS'03*
- Io_uring: Efficient IO with io_uring

o Unikernel

- Unikernels: Library operating systems for the cloud, ACM SIGARCH Computer Architecture News'13
- Cubicleos: a library OS with software componentization for practical isolation, ASPLOS'21
- Evaluating the performance of user-space and kernel-space web servers, CASCON'04

In-kernel sandbox

◦ eBPF

Privbox: Faster system calls through sandboxed privileged execution, ATC'22

Kernel bypass

o DPDK

State-of-the-art Solutions

• Asynchronous syscalls

• Asynchronous system calls, *OLS'07*

Syscall batching

Cassyopia: Compiler ass
Io_uring: Efficient IO with

o Unikernel

- Unikernels: Library oper
- Cubicleos: a library OS v
- Evaluating the performation

In-kernel sandbox

o eBPF

Privbox: Faster system calls through sandboxed privileged execution, ATC'22

Kernel bypass

o DPDK

Development efforts

mputer Architecture News'13 iolation, *ASPLOS'21* rs, *CASCON'04*

Userspace Bypass (UB)

Without UB

With UB

UB Design

Hot Syscall Profiler

的

- Run in kernel mode
- \circ Identify hot syscalls

BTC Translator

- \circ Run in user mode
- Translate user space instructions between hot syscalls into BTC
- Security guarantees

5

BTC Runtime

- Run in kernel mode
- Execute BTC

UB Design – Regular Syscall

Control flow

UB Design – Hot Syscall profiler

- Syscall sampling & Coarse-grained profiling
 - Find syscall intensive thread candidates

$\circ~$ Fine-grained profiling

 \circ $\;$ Find hot syscalls inside these threads

UB Design – BTC Translator

UB Design – BTC Runtime

UB Design – BTC Runtime

UB Design

UB Design

BTC Translator

Function: Disassemble the fast path binary and compile them to BTC

Problem: Buggy and malicious userspace code could corrupt kernel

Translator SFI

Solution: Implement SFI (Software Fault Isolation)¹ in the BTC translator.

- Register Remapping protect kernel registers and stack
- Instruction Sanitization avoid privilege escalation
- Memory Access Sanitization prevent unauthorized access to the kernel memory
- Branch Sanitization prevent unauthorized kernel code execution

BTC Translator – JIT Style

- Direct branches are translated at start because the target address is known when translating
- Translator SFI
- Indirect branches will be translated until the target address is known during runtime

Direct Branch

Indirect Branch

BTC Translator – Indirect Branch

Kernel space

BTC Translator – Indirect Branch

BTC Translator – Indirect Branch

- $\,\circ\,$ The hot syscall identifier and BTC runtime written in ${\bf C}$
- The BTC translator written in **Python**
- $\,\circ\,$ Modify Linux kernel for less than 30 LOC

Evaluation

The acceleration of

- I/O micro-benchmark
 - \circ $\,$ Applications that purely perform file I/O operations
- $\circ~$ Raw socket network packet process
- \circ Redis
- \circ Nginx

Settings

Linux KPTI On / Off × Physical machine/ Virtual Machine

Evaluation - I/O Micro-benchmark

In-memory file access (syscall read)

```
io_uring
                                                                                                                                                                                                                                                                                                                                                                                                                                                          UB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  base
                                                                                                                                                                                                                                                                                                                                                                    (i) vm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (ii) physical machine
                                                                                                                                                                                                                                                                                         ∑ 3500 😪
     for(i = 0; i < DOTS; i++){</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               7%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               5%
                                                                                                                                                                                                                                                                                                                                                                                                                                                               ð
                                                                                                                                                                                                                                                                                         IOPS(
                                                                                                                                                                                                                                                                                                                                 Μ
                                                                                                                                                                                                                                                                                                                                                                 9/3%
                         uint64_t ret = pread(fd, buf_arr[i % USE_PAGES],
                                                                                                                                                                                                                                                                                                                                                                                                 %
                                                                                                                                                                                                                                                                                                                                                                                                                                                               \sim
                                                                                                                                                                                                                                                                                                  2500 巖
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           8.4%
                                                                                                                                                                                                                                                                                                                                                                                                 Ē
                                                                                                                                    buffer_size, offset);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ξ
                                                                                                                                                                                                                                                                                                                                                                                                                               3%
                                                                                                                                                                                                                                                                                          _____
                         offset = next pos(offset);
                                                                                                                                                                                                                                                                                                                                                                                                  (O
                                                                                                                                                                                                                                                                                                    1500
      }
                                                                                                                                                                                                                                                                                         PTI
                                                                                                                                                                                                                                                                                                          500
                                                                                                                                                                                                                                                                                        a)
                Get comparable performance with io uring
Ο
                                                                                                                                                                                                                                                                                                                      0
                                                                                                                                                                                                                                                                                                                                                                  (iii) vm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                (iv) physical machine
                                                                                                                                                                                                                                                                                     (X) 3500 %9

(X) SdOl 3500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9

1500 %9
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                %6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                %
                                                                                                                                                                                                                                                                                                                                                                                                                                                              %Ø
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ð
                KPTI ON
                                                                                                                                                                                                                                                                                                                                                                %6
\bigcirc
                                                                                                                                                                                                                                                                                                                                                                                                 7%
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ω
                                                                                                                                                                                                                                                                                                                                                                                                                                                               4%
                                    40% - 110% on Physical machine
                      Ο
                                                                                                                                                                                                                                                                                                                                                                  H
                                                                                                                                                                                                                                                                                                                                                                                                                                                                ſ
                                                                                                                                                                                                                                                                                                                                                                                                                              3%
                                                                                                                                                                                                                                                                                                                                                                                                  00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             G
                                     30% - 90% on VM
                      \bigcirc
                KPTI OFF
\bigcirc
                                      16% - 52% on Physical machine
                      Ο
                                                                                                                                                                                                                                                                                                                        о́64В
                                                                                                                                                                                                                                                                                                                                                      256B
                                                                                                                                                                                                                                                                                                                                                                                        1KiB
                                                                                                                                                                                                                                                                                                                                                                                                                       4KiB
                                                                                                                                                                                                                                                                                                                                                                                                                                                      64B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   256B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1KiB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    4KiB
                                      14% - 41% on VM
                      Ο
                                                                                                                                                                                                                                                                                                                                                                                                                            I/O Size
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             23
```

Evaluation

A brief view of the acceleration rate

- Raw socket => 30% 40%
- Redis => -5% 16%
- Nginx => -1% 13%

(Physical machine with KPTI on)

	Test	VM	Physical
w/ PTI	In-mem	30.3% - 88.3%	38.4% - 112.9%
	Redis GET	-3.7% - 10.8%	-5.4% - 6.4%
	Redis SET	-0.4% - 12.4%	-3.2% - 16.1%
	Nginx	0.4% - 10.9%	-1.4% - 13.4%
	Socket	31.5% - 34.3%	30.9% - 38.6%
w/o PTI	In-mem	14.3% - 41.6%	16.4% - 52.0%
	Redis GET	-2.0% - 4.6%	-6.4% - 3.9%
	Redis SET	-5.5% - 4.9%	-0.9% - 2.8%
	Nginx	-1.2%0.3%	-0.2% - 3.0%
	Socket	14.5% – 17.8%	9.2% - 19.8%

Conclusion

- We propose Userspace Bypass(UB) which makes syscall much cheaper
- UB requires no extra development efforts
- UB requires minimal system architecture changes

Code available at: <u>https://github.com/glarer/UserspaceBypass</u>

