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Background – System Call

System call is a mechanism that allows a process to request services or 
functionality from kernel. 

User
Space

Kernel
Space

1 #include <stdio.h>
2 int main(){
3   printf("Hello World!\n");
4   return 0;
5 }

C library

syscall(SYS_write, 1,
          "Hello World!\n", 13);

...
do_syscall_64(nr, regs);
...

function call

system call
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Background – System Call Cost

Direct cost
o Context Switch 

o Saving and restoring the CPU states
o Syscall instructions

o E.g. syscall/sysret
Ø Syscall without operations costs ~ 992 CPU cycles 

Indirect cost
o Cache Pollution

o L1 cache and TLB polluted by syscalls
o Out of Order Execution (OOE) of CPU Stall

o To guarantee the execution order 
o Kernel Page Table Isolation(KPTI)

o Page table walking, TLB miss
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Background – System Call

System call overhead is usually negligible, but sometimes it is significant. 
Happens in applications with a huge I/O demand, e.g.  Redis and Nginx.
 

User
Space

Kernel
Space

1 for(i=0; i < 0x1000000000; i++)
2    printf("Hello World!\n");

C library

syscall(SYS_write, 1,
          "Hello World!\n", 13);

...
do_syscall_64(nr, regs);
...

function call

system call
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State-of-the-art Solutions
o Asynchronous syscalls

o Asynchronous system calls, OLS’07

o Syscall batching 
o Cassyopia: Compiler assisted system optimization, HotOS’03
o Io_uring: Efficient IO with io_uring

o Unikernel 
o Unikernels: Library operating systems for the cloud, ACM SIGARCH Computer Architecture News’13 
o Cubicleos: a library OS with software componentization for practical isolation, ASPLOS’21
o Evaluating the performance of user-space and kernel-space web servers, CASCON’04

o In-kernel sandbox 
o eBPF
o Privbox: Faster system calls through sandboxed privileged execution, ATC’22

o Kernel bypass 
o DPDK 5
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Userspace Bypass (UB)

No development efforts to 
reduce system call cost

UB transparently translates user space 
instructions to kernel space for syscall-
intensive applications. 

user 
space

do_syscall

syscall_ 
exit

user 
space

syscall_ 
entry

user 
space

syscall_ 
entry

do_syscall

user 
space

user 
space

do_syscall

User mode Kernel modeUser mode Kernel mode
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entry
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……

syscall_ 
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syscall_ 
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UB Design

Hot Syscall Profiler

o Run in kernel mode

o Identify hot syscalls

BTC Translator

o Run in user mode

o Translate user space 
instructions between hot 
syscalls into BTC

o Security guarantees

BTC Runtime

o Run in kernel mode

o Execute BTC
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UB Design – Regular Syscall

Code Path

Target Process

Kernel Space

Syscall 
entry

Do 
syscall

Syscall
exit

Syscall

Syscall

Control flow
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Target Process

Kernel Space

Syscall 
entry

Do 
syscall

Syscall
exit

Syscall
profiler

Code Path
Syscall

Syscall

UB Design – Hot Syscall profiler

Fast Path o Syscall sampling & Coarse-grained 
profiling
o Find syscall intensive thread

candidates

o Fine-grained profiling
o Find hot syscalls inside these threads

Control flow
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Target Process

Kernel Space

Syscall 
entry

Do 
syscall

Syscall
profiler

Code  gen

Translator

SFI infoinfo

BTC of Fast 
Path

Fast Path
Syscall

Syscall

UB Design – BTC Translator

Fast Path

Runtime info Control flow
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Fast Path

Target Process

Kernel Space

Syscall 
entry

Do 
syscall

Syscall

Syscall
profiler

Daemon

Code  gen

Translator

SFI infoinfo

BTC of Fast 
Path

Run time
w UB

UB Design – BTC Runtime

Runtime info Control flow
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Translator

SFI

Function: Disassemble the fast path binary and compile them to 
BTC

Problem: Buggy and malicious userspace code could corrupt 
kernel

Solution:  Implement SFI (Software Fault Isolation) 1 in the BTC 
translator.

o Register Remapping - protect kernel registers and stack 
o Instruction Sanitization - avoid privilege escalation 
o Memory Access Sanitization - prevent unauthorized access 

to the kernel memory 
o Branch Sanitization – prevent unauthorized  kernel code 

execution

1. Native client: A sandbox for portable, untrusted x86 native code

BTC Translator
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o Direct branches are translated at start because the target 
address is known when translating

o Indirect branches will be translated until the target address is 
known during runtime

BTC Translator – JIT Style

Translator

SFI

Direct Branch Indirect Branch

jmp rax
ret

label1:
mov rax, 1
ret

label2:
mov rax, 2
ret

jmp label;
ret 

label:
mov rax, 1
ret
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0x123: JMP RAX

……

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

……

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

Start status

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123  →  0x456

……
CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

……

0x456: XX 

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P1: Path 1

Start status

BTC Translator – Indirect Branch
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0x123: JMP RAX

……

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

……

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

Start status

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123  →  0x456

……
CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

……

0x456: XX 

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P1: Path 1

Start status

BTC Translator – Indirect Branch
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CMP RAX, 0x456
JZ loc_0x456
CMP RAX, 0x789
JZ loc_0x789

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

P1 execute

0x123: JMP RAX

……

P1

MOV [RBP - 0x18, 0x123]
MOV [RBP - 0x10, RAX]
JMP exit_indirect_jmp

0x123: JMP RAX

P1 add info: 0x123  →  0x456
P2 add info: 0x123  →  0x789

……

P2 execute

CMP RAX, 0x456
JZ loc_0x456

MOV [RBP-0x18, 0x123]
MOV [RBP-0x10, RAX]
JMP exit_indirect_jmp

……

0x789: XX 0x456: XX 

Kernel space
User space

BTC

Translator

Fast Path

BTC Runtime

P2

P1: Path 1
P2: Path 2

Start status

BTC Translator – Indirect Branch
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o The hot syscall identifier and BTC runtime written in C

o The BTC translator written in Python

o Modify Linux kernel for less than 30 LOC

Implementation
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The acceleration of

o I/O micro-benchmark
o Applications that purely perform file I/O operations

o Raw socket network packet process

o Redis

o Nginx

Settings

o Linux KPTI On / Off × Physical machine/ Virtual Machine

Evaluation
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In-memory file access (syscall read)

o Get comparable performance with io_uring

o KPTI ON
o 40% - 110% on Physical machine
o 30% - 90% on VM

o KPTI OFF
o 16% - 52% on Physical machine
o 14% - 41% on VM

Evaluation - I/O Micro-benchmark
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A brief view of the acceleration rate

o Raw socket  => 30% - 40%

o Redis => -5% - 16%

o Nginx => -1% - 13%

(Physical machine with KPTI on)

Evaluation
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o We propose Userspace Bypass(UB) which makes syscall 
much cheaper

o UB requires no extra development efforts
o UB requires minimal system architecture changes

Code available at: https://github.com/glarer/UserspaceBypass

THANKS!

Conclusion
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